Теплопроводность чем меньше тем лучше?

Теплопроводность материалов. Как считают? Сравнительная таблица на сайте Недвио

  • Недвижимость
  • Строительство
  • Ремонт
  • Участок и Сад
  • О загородной жизни
  • Вопросы-Ответы
    • Интерактивная кадастровая карта
    • О проекте Недвио
    • Реклама на Nedvio.com

Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).

Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.

Коэффициент теплопроводности Лямбда. Что это такое?

Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.

Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.

Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.

Таким образом формула расчет будет выглядеть так:

  • λ (лямбда) — коэффициент теплопроводности;
  • ΔQ — количество тепла, протекающего через тело;
  • t — время;
  • L — длина тела;
  • S — площадь поперечного сечения корпуса;
  • ΔT — разность температур в направлении теплопроводности;
  • d — толщина перегородки.

За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Значения теплопроводности для различных материалов

Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:

Теплопроводность [Вт / (м · К)]

Войлок, маты и плиты из минеральной ваты

0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)

Н ержавеющая сталь

Применение коэффициента теплопроводности в строительстве

В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.

В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.

Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.

Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта. Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.

Какой же строительный материал самый теплый?

В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.

Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:

А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).

Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.

Разница между теплопроводностью и теплопередачей

Помимо коэффициента теплопроводности Лямбда существует также коэффициент теплопередачи U . Они звучат похоже, но обозначают совершенно разные вещи.

Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.

Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.

Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

Теплопроводность. Просто о сложном.

При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше, — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).

На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.

Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.

Читайте также  Планкен или имитация бруса что лучше?

Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).

В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен).

Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.

Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.

Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.

Её разбор проведем на примере теплоизоляционного материала из пенополиизоцианурата (ПИР/PIR) — LOGICPIR .

LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,021 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

  • твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
  • газообразной фазы – теплопроводность газа, который находится в ячейках.

Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».

Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:

Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.

Читайте также  Почему нельзя утеплять дом изнутри?

Спасибо компании «Технониколь» за помощь в подготовке материала

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Что такое коэффициент теплопроводности и для чего он нужен? Что значит «при 10 °С» или «при 100 °С»? Как правильно сравнить теплопроводность материалов. Первая статья Дмитрия Абрамова из серии «Своя теплоизоляция».

Что такое коэффициент теплопроводности

Точное определение коэффициента теплопроводности дано в своде правил СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов».

Коэффициент теплопроводности — количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице.
Из СП 61.13330.2012

Здесь использованы следующие понятия:

Коэффициент — относительная величина, определяющая свойство какого-нибудь процесса или устройства.

Теплопроводность — свойство передавать теплоту от нагретых участков к более холодным.

Изотермическая поверхность — поверхность, температура которой одинакова во всех точках.

Температурный градиент — перепад температур.

По сути, это расчетный коэффициент, который показывает, сколько тепла проводит материал. Коэффициент теплопроводности обозначается символом λ (лямбда).

Для чего нужен коэффициент теплопроводности

Когда вы видите, что коэффициент тепловодности одного материала при 10 °С равен 0,034 Вт/мК, а другого 0,036 Вт/мК, при тех же условиях. Что это означает?

Благодаря коэффициенту теплопроводности вы можете сравнить, какой материал передает больше теплоты, а какой меньше. Чем меньше теплопроводность материала, тем лучшими теплоизоляционными свойствами он обладает.

Для примера сравните коэффициент теплопроводности материалов ALMALEN при 10 °С с другими вспененными полиэтиленами. Он имеет наименьшую теплопроводность в своем классе: от 0,032 Вт/мК до 0,034 Вт/мК.

А если пойти дальше, то коэффициент теплопроводности даст понимание, как изменяется количество передаваемого тепла через один и тот же материал в зависимости от температуры на поверхности изолируемого объекта. Количество передаваемого материалом тепла за промежуток времени называется тепловым потоком.

Определение теплового потока дано в ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме».

Тепловой поток — количество теплоты, проходящее через образец в единицу времени.
Из ГОСТ 7076-99

Что значит λ10, λ20, λ100 и так далее

Подробно разобраться в вопросе помогут нормативные документы. Возьмем, например, ГОСТ 32025-2012 (EN ISO 8497:1996) «Тепловая изоляция. Метод определения характеристик теплопереноса в цилиндрах заводского изготовления при стационарном тепловом режиме». Согласно этому методу:

λ10 — это коэффициент теплопроводности, полученный в результате испытаний при среднеарифметическом значении температуры теплоизоляции 10 °С. Среднеарифметическое значение температуры теплоизоляции — сумма температур на изолируемой поверхности и внешней поверхности теплоизоляции, разделенная пополам.

λ100 означает, что испытания проведены при среднеарифметическом значении температуры теплоизоляции 100 °С.

Как правильно сравнивать коэффициент теплопроводности разных материалов

Существуют различные методы определения коэффициента теплопроводности. При сравнении материалов необходимо всегда обращать внимание на сопоставимость и применимость таких методов. То есть необходимо сравнивать коэффициенты теплопроводности, взятые при одной и той же температуре и определенные по одному и тому же стандарту.

Например, по ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме» обычно определяют коэффициент теплопроводности при 25 °С. В то же время большинство европейских стандартов, например EN 12667:2001, определяют коэффициент теплопроводности при 10 °С.

Коэффициент теплопроводности одного и того же материала, измеренный при меньшей температуре, будет всегда иметь меньшее значение и выглядеть якобы предпочтительнее.

Когда кто-то сравнивает различные материалы по непонятно каким коэффициентам теплопроводности — бегите от такого «специалиста». В лучшем случае вы потеряете время.

Сравнение теплопроводности строительных материалов

Любой человек согласится, что дома должно быть всегда уютно: летом не жарко, зимой – тепло. За сохранение тепла и прохлады «отвечает» показатель теплопроходимости. Чем лучше перегородка проводит, то есть отдает тепло, тем быстрее он будет остывать и нагреваться. Стены и крыша дома должны иметь низкую проводность, а некоторые элементы, например, радиаторные батареи, могут быть хорошими проводниками. Узнать теплопроводность бетона и других смесей и блоков можно по таблицам или рассчитать по формуле.

  1. Что это такое
  2. Особенности выбора на основе этих показателей
  3. Влияющие факторы
  4. Коэффициент материалов из бетона
  5. Сравнение строительных материалов по толщине

Что это такое

Теплопроводность строительных материалов играет важную роль при их выборе. Термин означает количество тепла, которое разные перегородки одинаковой толщины могут провести за единицу времени. Чем ниже показатель, тем хуже тепло проходит – плоскость плохо нагревается и медленно остывает.

Коэффициент проницаемости показывает, сколько тепла может пройти через 1 метр метровой стены при разнице температур в 1 градус. Единицей измерения является Вт/(м*С), где м – это метры, а С – градус Цельсия.

В зависимости от значения стройматериалы используют для разных целей: с низкой проводимостью применяют для утепления, чтобы дома не было холодно, с высокой – для отвода тепла и быстрого охлаждения, например, для батарей.

Обратите внимание! Плоскости с низким значением будут медленнее остывать. Это позволит сэкономить на отоплении.

Тепловое или термическое сопротивление – это величина, обратная теплопроходимости. Она отражает, насколько сильно перегородка мешает прохождению тепла. То есть чем выше сопротивление, тем ниже проводность – этот стройматериал можно использовать для утепления. Формула для расчета сопротивления

  • R – нормативное температурное сопротивление.
  • H – толщина в метрах.
  • λ – значение проводимости.

Величина измеряется в (м*С)/Вт, где м – метр, С- градус Цельсия.

Особенности выбора на основе этих показателей

Чтобы построить хороший, прочный дом важно не забывать про теплопроницаемость стен и потолков. Увидеть важность этого свойства можно в простом примере: стена из бетона толщиной в 30 сантиметров и перегородка из кирпича в 50 см одинаково справляются с теплопотерей. Плита из железобетона должна быть примерно в 3 раза толще плиты из керамзитобетона.

При выборе стоит помнить не только о показателе конкретного материала, но и об используемом утеплителе. Например, показатель пенополистирола – 0,031-0,05 Вт/(м*С), изолона – 0,031-0,037 Вт/(м*С). Для сравнения: теплопроводность железобетона плотностью 2,5 тонны на куб. метр – 1,7, а дерева – 0,2-0,23.

Стоит отметить, зачем вообще нужно определять этот показатель при строительстве. Специалистами рассчитана норма для разных климатических поясов России и для разных мест: для стен, крыш, перекрытий. Если выбранные стройматериалы не дотягивают до нормы СНиП, их необходимо утеплить.

Обратите внимание! Если при строительстве использовались несколько стройматериалов в одном месте (например, для крыши или пола), для определения итогового коэффициента все значения складываются.

Влияющие факторы

Если сравнить свойства одного и того же стройматериала в разных условиях, легко увидеть, что теплоизоляционный коэффициент будет разным. Различается величина также у разных марок, причем разница может быть довольно значимой.

На проводимость влияют следующие факторы:

  1. Плотность. При высокой плотности частицы расположены близко друг от друга, следовательно, передача тепла будет происходить довольно быстро. Легкие стройматериалы (например, керамзит) хуже отдают тепло, чем тяжелые.
  2. Пористость. Чем она выше, тем меньше тепла пропускается. Воздух отличается маленькой проводимостью, значит, чем больше отверстий в поверхности, тем слабее будет теплопередача.
  3. Структура самих пор. Большие, сообщающиеся между собой поры повышают проницаемость бетонной перегородки. Чтобы сохранить тепло внутри, лучше выбирать мелкие, замкнутые отверстия.
  4. Влажность. При намокании бетона или кирпича воздух вытесняется, заменяется жидкостью или становится влажным воздухом. Коэффициент увеличивается почти в 20 раз.
  5. Температура. Чем она выше, тем выше коэффициент.

Обратите внимание! Зимой, когда влага превращается в лед, теплопотери увеличиваются еще сильнее. Кроме того, промерзание ведет к разрушению.

Коэффициент материалов из бетона

Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.

Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:

  1. Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
  2. Пенобетона – 0,08-0,29.
  3. Керамзитобетона – 0,14-0,66.
  4. Красный глиняный кирпич – 0,56.
  5. Силикатный кирпич – 0,7.
  6. Блоков из газосиликата – 0,072-0,165.
  7. Теплопроводность штукатурки – 0,1-1.

Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.

Сравнение строительных материалов по толщине

Таблица теплопроводности строительных материалов позволит быстро просчитать, хватает ли коэффициента перекрытия, а также найти необходимую толщину. Также можно воспользоваться онлайн калькулятором на сайтах строительных материалов.

Обратите внимание! В таблицах зачастую присутствует не одно значение теплопроницаемости, а несколько. Основное дается для сухого стройматериала при испытании в лабораторных условиях по ГОСТу, другие – для различных условий эксплуатации, например, при сухом и влажном воздухе, при разных температурах.

Для самостоятельного расчета толщины стены можно воспользоваться формулой:

Показание R можно узнать в таблице «Строительная климатология», в которой для каждого региона даны свои значения. Показания λ даны в технических характеристиках материала.

Читайте также  Какие обои выбрать для небольшой комнаты?

Для Москвы R составляет 3,28. Если перегородки будут выполнены из железобетона (плотность 2,5 т/ куб. м, λ= 1,690), их толщина должна составить больше 5,5 метра.

Если взять керамзитобетон плотностью 1,8 т/куб. м. (λ = 0,66), величина «снизится» до 2,16 метров. Для пенобетона плотностью 1 т/куб. м. (λ = 0,29), размер составит меньше метра – 95 см.

Легко увидеть, что, чем выше показатель проводимости тепла, тем больше должна быть толщина. Чтобы уменьшить эту величину, их дополнительно оббивают более тонкими утеплителями.

При выборе материала для пола, стены, крыши или перегородки стоит обратить внимание на теплопроводность стройматериалов. Эта величина отвечает за проведение тепла через материал, то есть за то, как быстро будет нагреваться и остывать дом. Чем она ниже, тем хуже проходит тепло и тем медленнее здание будет промерзать.

Сравнение арболитовых блоков и газобетона — что лучше

Сравнение характеристик кирпича и газобетона

Технология алмазной резки для бетонных стен

Сколько надо цемента чтобы сделать на 1 м3 бетона

Просто о сложном: сравнительная таблица теплопроводности строительных материалов

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

    Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  • Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
  • «Холодно, холодно и сыро. Не пойму, что же в нас остыло. » Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

    Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

    Коэффициент теплопроводности строительных материалов – таблицы

    Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

    Таблица коэффициентов теплоотдачи материалов. Часть 1

    Таблица теплопроводности изоляционных материалов для бетонных полов

    Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

    Таблица теплопроводности кирпича

    Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

    Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

    Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

    Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

    Теплопроводность разных видов кирпичей

    Таблица теплопроводности металлов

    Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

    Теплоэффективность разных видов металлов. Часть 3

    Таблица теплопроводности дерева

    Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

    Прочность разных пород древесины

    Таблица проводимости тепла бетонов

    Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

    Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

    Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

    Какой коэффициент теплопроводности у воздушной прослойки

    В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

    Таблица проводимости тепла воздушных прослоек

    Калькулятор расчёта толщины стены по теплопроводности

    На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

    Окно расчёта калькулятора

    В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

    Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

    Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

    Расчёт проводимости тепла всех прослоек стен

    Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.